INORGANIC CHEMISTRY

Total Marks: 31

Max. Time: 35 min.

Topic: Chemical Bonding

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9, 9]
Multiple choice objective ('-1' negative marking) Q.4	(4 marks, 4 min.)	[4, 4]
True or False (no negative marking) Q.5	(2 marks, 2 min.)	[2, 2]
Subjective Questions ('-1' negative marking) Q.6 to Q.7	(4 marks, 5 min.)	[8, 10]
Match the Following (no negative marking) Q.8	(8 marks, 10 min.)	[8, 10]

- 1. Which of the following molecule is/are non polar:
 - (A) XeF₂
- (B) PCI₃F₂
- (C) XeF₄
- (D) All of these
- 2. The dipole moments of the given molecules are such that:
 - (A) $BF_3 > NF_3 > NH_3$ (B) $NF_3 > BF_3 > NH_3$ (C) $NH_3 > NF_3 > BF_3$ (D) $NH_3 > BF_3 > NF_3$.

- 3. In which type of molecule, the dipole moment may be non-zero:

(where A - Central atom, B - Bonded atom, L - Lone pair)

- $(A) AB_2L_2$
- (B) AB_2L_3
- (C) AB_4L_2
- (D) AB_4

- 4.* Which is incorrect order for net dipole moment:
 - (A) HF > HCI > HBr > HI

(B) $CH_3 - F > CD_3 - F$

(C) SO₃ > SO₂

(D) CH₂ – CH = CHCI (cis)> CH₂ – CH = CHCI (trans)

- 5. True or False
 - (a) The dipole moment of HCl molecule is 1.05 D and its internuclear separation is 1.25 Å. The charge effectively held by the chlorine atom is 7/40 times the electronic charge.

(Given : charge of an electron = 4.8×10^{-10} esu)

- (b) All the N-N bond lengths are same in azide ion and hydroazoic acid.
- 6. Arrange in order of increasing dipole moment : BF₃, H₂S, H₂O.
- 7. The gaseous Potassium chloride molecule has a measured dipole moment of 9.6 D, which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is 2.67×10^{-8} cm. Calculate the percentage ionic character in KCl molecule.
- 8. Match the following:

Column I		Column II	
(Species)		(Characteristics)	
(A) NH ₃	(p)	Non-polar molecule	
(B) PF ₂ CI ₃	(p)	Polar molecule	
(C) XeF ₂	(r)	Bonding taking place in ground state	
(D) H ₂ S	(s)	Bonding taking place in excited state.	

Answer Key

DPP No. #22

- 1. (D) 2. (C) 3. (A) 4.* (BCD)
- 5. (a)True (b) False
- 6. BF₃ < H₂S < H₂O. BF₃ has a zero dipole moment because of its symmetry. H₂S has a lower dipole moment than H₂O because of the much lower bond polarity of H–S bond compared to H–O bond.
- 7. 75%. 8. (A-q, r); (B-p, s); (C-p, s); (D-q, r).

Hints & Solutions

DPP No. # 22

- 1. All are symmetrical molecules. \therefore $\mu = 0$ (Non polar compounds).
- The dipole moment of BF₃, NF₃ and NH₃ respectively is zero, 0.24D and 1.46D.
- 3. $AB_2L_2 \rightarrow Bent \ (\mu \neq 0), AB_2L_3 \rightarrow Linear \ (\mu = 0), AB_4L_2 \rightarrow Square \ planar \ (\mu = 0), AB_4 \rightarrow Tetrahedral \ (\mu = 0).$
- 4.* Correct orders of dipole moment are

HF > HCI > HBr > HI (decreasing bond polarity)

CD₃F > CH₃F (D is more electro +ve than hydrogen)

 $SO_2 > SO_3$ (SO₃ is symmetrical so dipole moment - 0)

5. (a) 1.07×10^{-8} esu $-cm = \delta \times 1.2738 \times 10^{-8}$

⇒ 8.4 × 10⁻¹¹ esu

Fraction =
$$\frac{\delta}{e} = \frac{8.4 \times 10^{-11}}{4.8 \times 10^{-10}} = \frac{7}{40}$$
 or 0.175.

(b) All N – N bond length are same in azide ion but not in hydrazoic acid.

- 6. BF₃ < H₂S < H₂O. BF₃ has a zero dipole moment because of its symmetry. H₂S has a lower dipole moment than H₂O because of the much lower bond polarity of H–S bond compared to H–O bond.
- 7. Dipole moment of compound if it would have been completely ionic

=
$$(4.8 \times 10^{-10} \text{ esu}) (2.67 \times 10^{-8} \text{ cm}) = 12.8 \text{ D}$$

so % ionic character =
$$\frac{9.6}{12.8}$$
 × 100% = 75%

- **8.** (A) NH_3 : $\mu \neq 0$ (polar molecule). 3 unpaired electron and 3 bonds.
 - .. Bonding takes place in ground state.
 - (B) PF_2CI_3 : μ = 0 (Non-polar molecule) 3 unpaired electron and 5 bonds.
 - .. Bonding takes place in excited state.
 - (C) XeF₂: μ = 0 (Non-polar molecule) 0 unpaired electron and 2 bonds.
 - .. Bonding takes place in excited state.
 - (D) H_2S : $\mu \neq 0$ (Polar molecule) 2 unpaired electron and 2 bonds.
 - .. Bonding takes place in ground state.

